Date of Application, 8th July, 1890-Accepted, 13th Sept., 1890
COMPLETE SPECIFICATION.
[Communicated from abroad by The Errosson Coast Defence Company (Incorporated), in the (ily of New York, United States of America.]

Improvements in Subaquatic Projectiles.

I Henry Edward Newton of the Office for Patents, 6 Bream's Buildings, Chancery Lane in the County of Middleser, Patent Agent, do hereby declare the nature of this invention and in what mamner the same is to be performed, to be particularly described and ascertained in and by the following statement:-
This invention relates to that class of projectiles whose path is intended to be either entirely sub-aquatic, or partly aerial and partly sub-aquatic, and which may be fired from guns in fortifications, as well as from slips or other vessels. The objects of the invention are to effect such an automatic steering of the projectile in a vertical plane, after it enters the water, as to insure a true horizontal trajectory at a predetermined and fised depth, and to obtain as great a subaquatic range as possible for the projectile; and the invention consists in certain means hereinafter described and claimed, whereby these objects are accomplished. For what may be termed purely subaquatic projectiles, which are to be projected from a gun arranged in a vessel below the level of the surface of the water, the automatic steering in a vertical plane is of great importance, as the pitching of the vessel makes it difficult to expel such projectile from the gun at the moment the vessel is level, and any slight inclination of the axis of the gan, either above or below the horizontal, at the time of firing, will seriously affect the depth of submergence of the projectile at the end of its path. For what may be termed aerial-sub-aquatic projectiles, which are projectod from guns above water, to strike vessels or ibdies under water, the antematic steering in a vertical plane is of as great, if not greater importance, as it enables such projectiles to strike the matornand reach the ressel or object aimed at, even if entering the water at a consideribhted ditapem it, thereby increasing the size of its horizontal target manifold
In the accompanying drawings,

- Fig. 1 is a top view of a subaquatic projectile embodyiadothis inventiou, shoy ying also, in section parts of the wall of a gun from which the projectibe is to bos ded, and an outside view of a piston through which the charge of the guntide oh 4 dieprojectile. Figs. 2 and 3 represent vertical longitudinal sectional views of different portions of the length of the projectile on a larger scale than Fig. L.

7. Figs. 4 and 5 , represent on a still larger scale than of Figs. 2 and 3, vertical sectional views of portions of the automatic steering apparatus.

Figs. 6, 7, 8, 9, 9^{*}, represent on the same scale as Figs 4 and 5, transverse sectional views of the projectile taken respectively in the lines $x x, y y, z z, * *$, and 12, 13, of Figs. 2, 3, and 5.
i Fig. 10, is a diagram illustrating a modification of what is herein termed the regulator.
Fig. 11 represents an attacking and an attacked vessel, illustrating the operation of the invention.

- Similar letters of reference designate corresponding parts in all the figures.
$A, A^{1}, A^{2}, A^{3}, A^{4}, A^{5}$, designate the body of the projectile, which may be constructed in any suitable manner to receive and contain the explosive charge, the automatic steering apparatus, and the rocket charges, to increase the sub-quaatic range, but which projectile is represented as made of six sections, each constituting a portion of its length.
The foremost of these sections, A, contains the explosive charge; the rearmost Beection, A^{5}, contains the fuse of what may be called the accelerating charges, and is removable to reach the interior of the next section A^{4}, which has attached to it the steering rudders or diving blades B B ; the second section, A^{1}, from the front, contains what
may be termed the regulator C ; the third section A^{2} contains what is called the centre-plate D ; the fourth section A^{3} has upou its extcrior, longitudinal fins f, two of which are continued on the section A^{4}.
The several sections may be united in any convonient or suitable mamer; for instance, by being secured together as shown at v in Fig. 5, or by fitting one into another, and securing them by serews, as shown at v^{1} in the same figure, or by connecting bands and screws, as shown at v^{2} in Fig. 4.
The example shown has attached to its forward end, what is termed a pilet-shell P, which forms no part of the present invention, and therefore needs no particular description here. The construction of the body will bo the same for the purely subaquatic projectile and for the aerial-subaquatic projectile, except that the purely subaquatic projectile will require to be furnished, as in the example shown, with a water-ight packing e, to fit the gun from which it is to be discharged. For the aerial-sub-aquatic projectile, such packing would be unnecessury.
The rudders B , which are arranged one on cach side of the projectile, are both firmly secured to a pivotal spindle d, which passes transversely through the body of the projectile, at right angles to its axis. and is fitted to suitable bearings d^{*} (lig. 6), theroin. As this spindle requires to be maintained in a horizontal position, that the rudders may always work vertically, the projectile requires to be prevented from tarning when it is in the water, and to meet this requirement, I employ the centre plate or weight D, which consisls of a substantially flat plate of metal having its central plane parallel with the axis of the projectile, to work through a longitudinal opening d^{2} therein, in a plane perpendicular to the axis of the rudder spindle d, the axis of the pivot d^{\prime} being parallel with that of the spindle. The lower part of the said phate or weight is made heavier than the rest of it, in order that when it is allowerd to drop through the opening d^{3}, it may bring the centro of gravity of the projectile as low as possible, to maintain the rudder spindle d positively horizontal. Stops d^{3} are providel on this plate or weight, to prevent it from falling below a proper position, and a watertight casing d^{4} is provided in the body, to cover the said plate, and the opeuing d^{2}, and prevent the water from entering the body through the said opening. When the projectile is in the gun, this plate or weight is all contained within this casing and within the body of the projectile.
As it is not only absolutely essential that the projectile should have the axis of its rudder spindle horizontal while in the water, but is also desirable that the said axis should be horizontal before the projectile enters the water, an externally projecting stad v^{3} (see Fig. 3) is provided on the section A^{2}, suitably arranged on the circumference of the projectile, to run in a straight groove planed in the bore of the gun, to keep the said axis horizontal.
The regulator hereinbefore mentioned consists mainly of a hydraulic cylinder O , (see Figs. 3, 5, 8 and 9) fitted with two water-tight but freely moving pistons $c c^{1}$ of equal diameter (see Figs. 3 and 5). This cylinder is represented as arranged in the lower part of the section A^{1} of the body with its axis parallel with that of the projectile. It may be either cast with the section A^{1} as represented, or be otherwise permanently attached thereto. The cylinder is fitted, between the pistons $c c^{1}$, with a stationary block or bridge C^{1}, having a central rectangular opening, as shown in Fig. 9, to contain the pinions $g g^{1}$ and their supporting spindle g^{*}, and to permit the passage of four racks $h h h^{1} h^{1}$, of which h and h are arranged diagonally to each other, as shown in Fig. 9, and are attached to the piston c, and h^{1} and \bar{h}^{1} are also arranged diagonally to each other, and are attached to the piston c^{1}.

The spindle g^{*} is fast in the bridge C^{1}, and the pinions are loose upon it.
The upper rack h of the piston c, and the lower rack h^{1} of the piston c^{1}, gear with the pinion g, while the upper rack h^{2} of the piston c^{2}, and the lower rack h of the piston c, gear with the other pinion g^{1}, so that as either piston moves in one direction, it. will tend to pall the other one in the other direction.

The two pistons will be operated upon together by any pressure between them, and being thus geared together, the power exerted upon them is equal to that exerted upon a single piston of double the area, and, what is more important for the purpose of this

Nemtons Improwments in Subuquatic Projectiles.

invention, as will be hereimaller explained, the weight and momentum of one, may be banced by the weight and momentum of tho other.
The racks $h / h^{1} h^{1}$ heimg fithed ios the quadrangular opening in the block C^{1}, as shown in Fig. !, serve to gride tho pishons o ce. The said racks are of such length, that they serve ats stop: to limit the distance which the pistons are permitted to approach eath ofher. 'J'o provide for the insortion of tho block C^{1} into the cylinder O , the said cylinder is hored of two difforent dimeters, the rearward part being the
 pistons ac'. The hlock is insortel throum the larger rearward end of the cylinder ap to a shoukder, ard is secourel in pare by a fanged bushing i, which is inserted into the rearvand and of the rylindor, and suentod by sorew bolts i^{3}. The bore of this bushing eorrespumets with ike smatior forwarl portion of the cylinder bore, and the dameter of limp pistoms. Fig. shosvs tha piston of fitted to the smaller bore of the cylinder, and the pintom a finined to the hashing. The piston e is furnished, on its outer side, with a ron or rack c^{*}, which works throuth a guide provided in a head j, which is bolted on to the rear cund of the cylindor by the same bolts i^{1}, hereinbefore mentioned, which wermo the bushing i. This head j contains the bearings for the shalt k^{1} of a tood hod sedor h, which quars with the said rack c^{*}.
The cylimeler (: is providred, between its two pistons $c c^{1}$, with openings both in its top and its hottom, for admilling water to it from an annular chamber or reservoir a formed around the exterior of tho section Λ^{\prime} of the projectile, as shown in Figs. 5, 9, and 9^{*}, by combruding in pard ol the sad sortion with a concave longitudinal profile, as shown in fig. 5 , and covoring the sail portion with a cylindrical jacket a^{1}, of flexible water-light materiat, as indiatrubher. This jacket a^{1} is secured in place and protected by an exdermal guard eylinder A^{*} of metal, which is made in two halves, and thetemed to the stid setion A^{i} by serews a^{4}. Tho said cylinder A^{*} is constructed with monerons openings in ifs exterior, which my bo of an sutable form, as for instaneo longridult:al silow, which give it the wridiron-like form shown in Fig. 3 . The ammar chamber or resorvir "u, and whe space in tho cylinder (! between the pistons of aro dillal with wator through an opening at a^{2} (see Figs. 5, 9, and 9*), which is then closed by a sorew phin a ${ }^{3}$. To provide for the escape of air from the cylinder () while filling it with water, a pipe b is provided to form communication between the sain $\cdot y$ linder and the chamber a.
When the projertila is in the water, the flexible jacket a^{1} is exposed to the pressure of the water surroumbing it, and comsegumtly the water in the chamber or reservoir α and eylinder (', are sulpect to tho same presesure. This pressure varies according to the depth of submornence of the propertile, and it is partly by this pressure acting between the pistons c c^{1}, aml partly ly the operation of a spring and connections, which will next be deseribed, that tho oporation of the steering rudders or diving blades B is procuced, and tho true horizontal trajectory, at a predetermined and fixed depth, is insurod
Firmly secured to the toothed sector k, or to the shaft k^{1} thereof, are two grooved sectors $l m$ of differmit radii, constituting arms of a lover, of which the toothed sector k may he considured as another arm. To the smaller arm m of these sectors, is secured ono end of a ropo or cord p, preferably a wire rope, which passes parity around a sheave m, fist on tho rudder spinde, and the other end of which is secured to the spiral springt, which is the spring just hereinbefore referred to, the said spring being secured to a scrow-threudal row t^{2}, which passes freely throngh a fixed bearing t^{2} secured in the section A^{4} of the body of the projectile. The screw-thread of this rod is fitted, in front of the said bemriug t^{2}, with a nut t^{3}, by which the tension of the said spring t may bo adjusted. The said rope p is secured to the said sheave by a set screw p^{1}. The maid spring t acos through the lever arm m and the toothed sector k on the piston rod c^{*}, in such manner as to draw the pistons c c towards each other, in opposition to the tondency to seprarato them produced by the pressure of the water between the said pistions when the projectile is in the water. The pull of the spring acts to move the rudders downward, and the pressure of the water between the pistons acts to more them upward.

Neroton's Improrements in 'rubraquatic I'rojectiles.

The radders are fastemed on thesir spindle in su-h a position that when the pistons are the closest together, the rear ends of fibe rudders will ineline downwards, and the water acting on the maderwide of their inclinm surface when the projestile is in motion therem, will temd to rase the tail and of the projectile, thereby aturing the length of its lomgidadinal axis in suche a mamer, dhat thas projectile will drasemod. As long as the tension of tho spring forees the pistons fogreher wilh a gerater powa than that exerted by the sut pressure to move them apart, the propectite will continue
 ovor-powers the tension set on the spring, the two pistons will move apart, theroby reducing tho inclination ol the rudders, until ihese have reached a position paralled with tho longitudinal axis of tho propectile.

If the projectile keeps on descenting, the rudders will continno moving until their rear onds inclino tupard, and foreo the tail and of tho projoctile downward. When the projectilo has at last found a doph where it will proced wilh its longitudinal axis, horizontal, the shering rublers will remain sadionary. The tension hrought to bear on the spring t ly tho adjustiog mat l^{3}, will therefore determine fho depth at which tho projectifo will move horizontally in tho water. This tension is to be adjustad before pacing tho projectite in the grum.

In order to compmeate for the mblitional bension of the spriner produced by its being oxtomber further and further he the movoment of the pistons apart, the sectorshapad lover m is made excentric, as slown in lig. δ, which makes the sat sector in combination wilh the tonthed sector k produes a levor ol differential type, the seetor to maintaining tho same leverago fhrough its movement, and tho loverage of the arm or sector m gradually decrobing throtgh its forward mevement. The pressure of the water on the pistons is then eansed to act more and more powerfally on the radders as the projoctilo descends. This increase of tho power of the pistons as the projectile dosconds, tends, in tho wase of an arial-subaquatic projoctile, to prevent any excessive diving whon tho projection entors the wator at the ond of it aorial flight, as illustrated in Fig. 11, wherem the projoctile is ropresented, at A , as just entering the water, and at N^{1} as having assumed its horizontal path.

When the projectilo is used on tho aerial-subaquatic principlo, or on the purely subaquatic principhe, it is important that the steering rudders or diving blades should stand parallel with the longiturlinal axis of the projectite as this leaves the gun.

In an arrial-subaquatic projectile, any inclimation of these radders might seriously affect its trajectory, or in a purely sulaquatie projectile, such inclination would also bo dangorons, as it wonld give the projectile a downward movement bofore the regulator could bo brought to act. In order, therefore, to lock tho rudders in a borizontal positien against; the pall of the spring e, while the projectile is in the gun, and before tho regulator can come into oporation, there is provided, on the rudder spindle d, a sector shaped projection o, to bo enganeal by a locking hook or detent o^{1}, which is pivoted within the body of the projectile, and which is brought into engagement with the said projection o, as shown in life. 4 , by means of a suring 0^{2} applied to it. This hook o is cilso connected by a rope or cord y with the longer ono l of the two sectors or lever arms on the shaft of the toothed sector k, so that when the projectile becomes submergod, and the pistons of the rogulator are brought into action, the said arm or sector l will aet throagh tho cord q to pall the locking hook o^{1} out of engagement with the said projection 0 , and loavo the rudders free to tho action of the regulator.

Before placing the projectile in the gum, the rudders are pulled up into line with the axis of tho projectile, and tho hook of then becomes engaged with the projection o, and locks them against the tension of the suring t, which would otherwise give their rear ends a downward inclination. By thus pulling the rudders ur, their spindle d is causod to turn, and with it the shoave μ; and the wire rope p being fastened to this sheave, and extending therefrom to the lever arm m, must becume slack. As this would have the effent of leaving the two pistons free to move, a spring s and a slackening chain or picce r, are inserted into the said rope, the effect being that when the rudders are in their lowest inclined position, the spring s is fully extended, and the chain
taut, while when the rudders are pulled up to the horizontal position, as shewn in Fig. 2, the spring contracts, keeping the rope p still taut, besides having sufficient power to keep a good strain on the pistons to draw them towards each other. The chain r hangs down slack in this case. When the projectile gets below the surface of the water, the sea pressure acts through the flexible jacket a^{1} on the water in the chamber α, and on that in the cylinder C between the pistons, thus forcing the latter further apart, and the lever l, operated through the rack c^{*} and toothed sector k, soon moves sufficiently forward for the rope q to pull the detent o^{1} ont of engagement witn the projection o on the rudder spindle, and disengage the said spindle and the radders, and bring the diving gear into action. As the water forces the pistons further apart, the spring s gives way, and the slack of the chain r is taken up, and the longer lever arm l, acting through the rope q, holds the hook o^{2} out of engagement from the radder spindle.
One of the most important features of this invention, is the regulator having two hydraulic pistons geared together to move in opposite directions. It is well understood that a movable weight in a projectile starting with considerable initial velocity, will tend, by its inertia, to remain stationary while the projectile is moving forward, \& the force exerted on such movable body will be equal to its weight multiplied by sach velocity. It is therefore paramount that all movable weights in sneh projectiles should be balanced, and especially those that are intended to govern and regulate.
It will be seen that when the projectile is fired, the piston c will exert a foree rearward in proportion to the initial velocity of the projectile, and that the piston c^{1} will exert a similar force rearward, if its weight, including that of its racks $h^{1} h^{2}$, be equal to that of c, including its racks $h h$, and other movable connections (which are not self-balancing) between the rack c^{*} and the radder, but as the rearward motion of the piston c, through the intervention of the racks h and h^{1} and pinions g, g^{2}, which are but substitutes for a lever, will pull the piston c^{1} forward, the inertia of each piston balances that of the other, and the strain is bronght on the spindle.
In the modification of the hydraulic regulator shewn in Fiy, 10 , the pistons $c c^{1}$, instead of being in the same cylinder, are in separate cylinders $\mathrm{C}^{*} \mathrm{C}^{*}$, which are arranged one above the other, the piston rods being connected by a lever C^{2} working on a fulcrum in such manner as to move in opposite directions. The inner ends of these cylinders are open to the chamber C^{3}, which constitutes one of the sections of the projectile, and to which water is admitted from the sea through the openings a in the top and bottom. The opening a in the bottom is provided with a valve b^{b}. The object of this valve b^{1} may be explained as follows: As a subaquatic projectile must necessarily be of light construction, so that its weight may not exceed its displacement, it becomes desirable, in an aerial subaquatic projectile, to nse a small propelling charge, and fire at a high elevation, to obtain the necessary aerial range. The projectile will consequently enter the water at a considerable angle, and unless the steering rudders or diving blades are brought into immediate action, it will dive too deep. It is therefore advantagcous to have the regulator filled with water between its pistons before firing, so that no time will be lost in filling it when the projectilg dives.
The regulator constructed in Fig. 10 can be thus preparatorily filled through the upper openings a, and the water will be prevented from pscaping throagh the lower opening by the valve b^{1}, until the projectile reaches the water, after which the valve b^{1} is opened by the external pressure. It is obrious that the piston c^{1} being made to properly balance the piston c and the movable paris connected to and moving with it, the inertia of one will balance the inertia of the other. This form of regulator is the equivalent in its action to that first described, but the form first described is preferable, as in that the counterbalancing piston c^{1} being in line with the main piston c, ean be brought down near the bottom of the projectile, and it is desirable to get the weight as low as possible.
To increase the subaquatic range of the projectile, there are providel in the rear portion of it, a number of rocket charges u. As owing to the occupalion of the rear part of the interior of the hody by the rinder spindle and its attachments, it would be inconvenient to use such a charge in the central portion of the body, or in the bedy
proper of the profectile, two or more sure charges " in wheet iron bexes at arearanged on the extarion of the hooly in the form of fins, as shawn in the fignes 1,2 , ant 15 .

 conical bores in their rear onds, for their proper ignidion. The cases at are seenred in any convenient manmer within the boxes u^{1}, and the hoxns have in their roar ends wooden phags u^{3}, which are driven out by the axplosion of than rocket elargos. The charges may be tired hy a quick matrh u^{4}, inserted through hae reer ond of wheo projectile, and having hranchess loading to earh charge. $\overparen{\Lambda}$ small hole in the piston employed in the gin for driving out the profedile, will permit, the powder chargos of the gun to ignite the quick mateh.

A pistom 1^{11} (Pig . 1) should be applied in rear of the projectite, hetworen the projecting eharge \& tho hreech of hae gun, the sain piston boing furnished with any suitable pracking to mako it fit tightly to tho walls W of the gon.
Maving now particularly deserithed and ascortained the nature of the said invention and what mamor the same is to lo performed, as commmicated to mo from abroad, I deelare that what 1 claim is:--

1. The combination with a suhnuatic projectite, of a rodder having its pivot transverse to the axis of the proficetile, and a woight suspended in the projoctite to move through an opening therein a phan perpendenlate to ba pivot of tho rubdor, substanfally as herein deseribell, for the propose of mantaining the rudder pivot horizontal, as herein ses, forth.
2. The combination with a subuquatic projectile, of a rudder having its pivot transverse to the axis of the projectile, and a woight of phate form, having ite central plane parallel with the axis of the projoctile, and suspended within the projectile, to move through a longitudinal opening therein in a plane perpendicular to the axis of the rudder, sulstantially as and for tho purpose herein set forth.
3. The combination with a subaquatic projectile and a rudder thereon, for directing it in a horizontal trajectory, of two hydraulic pistons, ono of which is connected with said ruddor; a cylinder or cylinders for the said pistons, to contain water, exposed to the pressure of the water ontside the projectile, and gearing or connections, substantially as herein deseribed, betweon said pistons, wherely when one is caused to move in one direction, the other will he causel to move in the opposite direction, substantially as and for the purpose hersin sot forth.
4. The combination with a subaquatice projectile, and a radder thereon for direeting it in a horizontal trajectory, of a cylinder arramged within the projectile, two pistons in said cylinder, ono of which is comoeted with the rudder, and which are geared togrother substantially as heroin described, to be moved simultanesonsly in opposite directions by wator containod in said cylinder hotween them, substantially as and for the purpose heresin sat forth.
5. The combination with a subaquatio projectio, a rudder thereon for directing it in a horizontal trajectory, a spinde for said rudder, and a sheavo thereon, of a cylinder arranged lengthwise within the projectile, a piston in said cylinder, to be acted upon by the pressure of the water ontwids of he projectile, a rope or cord comected with said piston, and passing over said sheave, and a spring conncocted with said shoavo, to turn the rudder in the opposite direction to that in which the pressare of the water on said piston acts to turn it, subletantiaily as and for tho parpose herein set furth.
6. The combination with tho projectile, the rudder, the spring connected with the rudder spindie for turning it in ono direction, and tho hydraulic regralator for turning it in the other direction, of a lover through which tho regulator acts upon the rudder, and which has a difforential arm by which the varying tonsion of said spring is compensated for, substantially as herein described.
7. The combination with the projectile, the ruddor, the spring connected with the rudder spindle to tarn it in one direction, the hydraulic regulator for turning the said

Teroton's Improvements in Subaquatic Projectiles.

spindle in the opposite direction, and a detent engaging with said spindle to holl it against the tension of said spring, of a lever engaging with the piston of the said regulator, and having two arms, of which one is connected with the radder spindle, and the other with said detent, substantially as and for the parpose herein set forth.
8. The combination with the projectile, the rudder, the spring for turning the rudder spindle in one direction, the hydravlic regulator for turning said spindle in the other direction, and the detent for holding the rudder spindle against the tension of said spring, of two ropes or cords forming connections between the regulator and the rudder spindle and said detent. respectively, and a spring and cbain or siackening piece inserted in the rope or cord which connects the regalator with the rudder spindle, substantially as and for the purpose herein set forth.
9. The combination in a regulator for controlling the action of a rudder for directing a subaquatic projectile in a horizontal trajectory, of a water cylinder and tro pistons therein, provider each with two toothed racks arranged in diagonal relation to each other, a stationary bridge arranged within said cylinder between said pistons, and serving as a guide to said racks, and two toothed pinions pivoted withia said bridge, and each gearing with one rack of each piston, substantially as herein set forth.
10. The combination with the hydraulic regulator cylinder, of a surrounding annular water chamber or reservoir, the outer wall of which consists of a flexible jacket, substantially as herein described.
11. The combination with the hydraulic regulator cylinder, of a surrounding annular water chamber or reservoir, the outer wall of which consists of a flexible jacket, and an external guard cylinder A* substantially as herein set forth.
12. The combination with a subaquatic projectile and a radder therefor, of a piston connected with the said rudder, a water cylinder which is contained within the projectile, and in which said piston works, for controlling the position of the radder, \& to which there are openings from the exterior of the projectile at top \& boitom, \& of inwardly opening valves for closing said openings at the bottom, to permit the preparatory chargiag of the cylinder with water, substantially as herein set forth, with reference to Fig. 10.
13. The combination with the body of a projectile, of boses arranged lengthwise upon the exterior, in the form of fins, for containing rocket charges, substantially as herein described.

Dated this 8 th day of July 1890 .
NEWTON \& SON, Agents for the Applicant.

Iondon : Printed for Her Majesty's Stationery Ofice, by Dariog \& Son, Itd-1890,

